

Impacts of diffusion MRI spatial resolution on the short-range structural connectivity estimation **BIRTH Lab** Zheng Jialan

Introduction

White matter (WM) demyelination and degeneration are significant indicators of various brain diseases. However, short-range fibers (SAFs), which connect adjacent cortical regions within a range of 3 to 30 mm, have received less attention and are still mostly unknown despite their contribution to 90% of all structural

Results

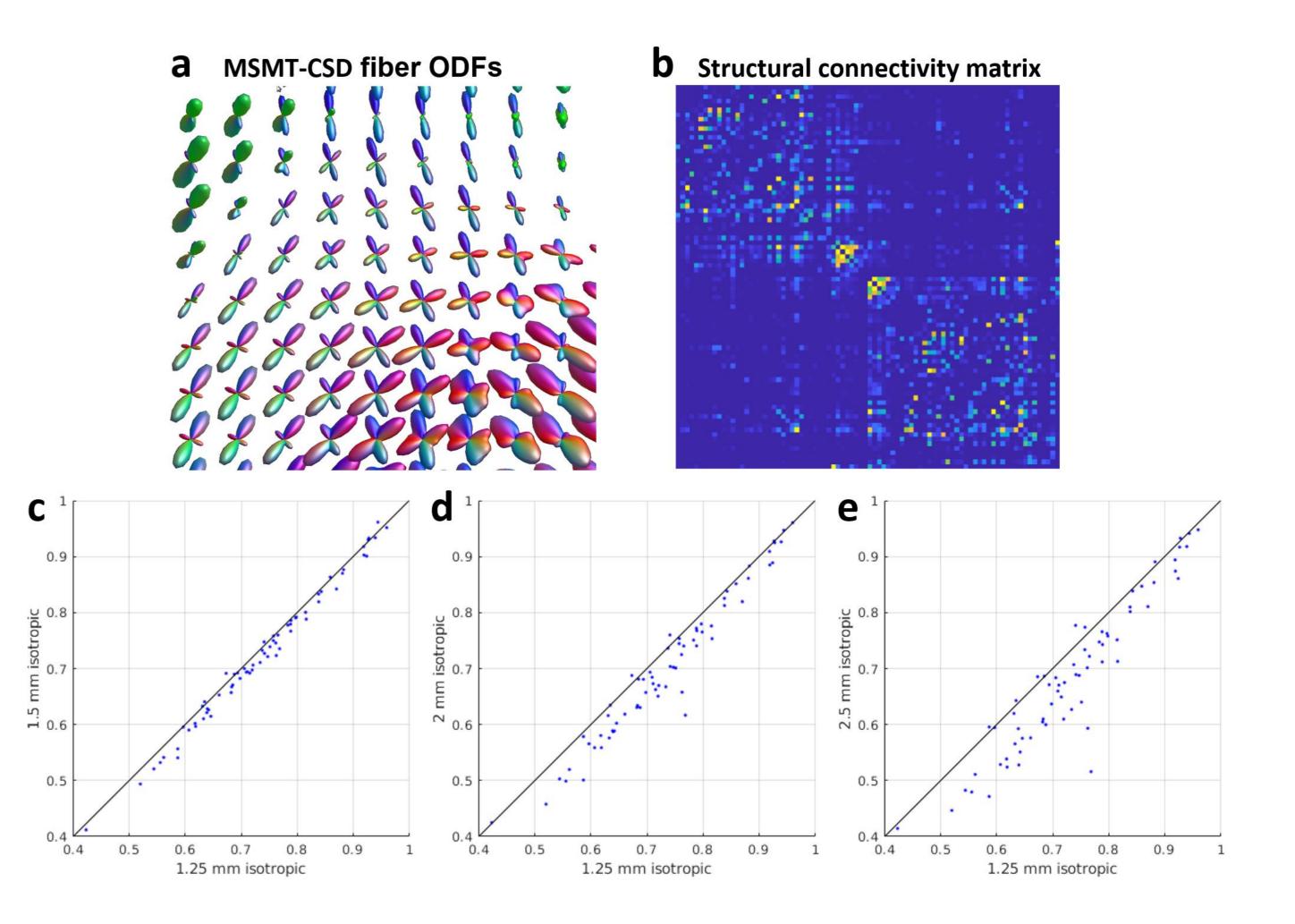
Scatter plots for the 20-subject-averaged short-range structural connectivity values for all 68 cortices at 1.25 mm versus at 1.5, 2, 2.5 mm isotropic resolution are displayed. The 20-subject-averaged and 68-corticeaveraged short-range structural connectivity values at

connections and their important role in mediating cortico-cortical connectivity. Diffusion MRI is the only non-invasive method capable of mapping WM fibers throughout the human brain and estimating structural connectivity. This study aims to optimize diffusion MRI acquisition for accurately estimating short-range connectivity. Since SAFs are located in the ~1.5 mm thick superficial WM, which is thinner than most cortices, we focus on studying the impacts of diffusion image spatial resolution on the short-range connectivity estimation.

Methods

1.25 mm, 1.5 mm, 2 mm, and 2.5 mm were 0.7483, 0.7363,

0.7199, and 0.7067, respectively, demonstrating a decrease


in values as the image spatial resolution decreases.

Conclusions and Discussions

Lower image spatial resolution leads to under-estimated short-range connectivity for most cortical areas.

Clinicians have to consider the impacts of diffusion MRI spatial resolution on structural connectivity estimation. High-resolution diffusion MRI data should be collected preferentially if the signal-to-noise ratio is sufficient.

Fiber orientation distribution functions were estimated using the state-of-the-art multi-shell multi-tissue constrained spherical deconvolution (MSMT-CSD) method. Probabilistic tractography was performed using the anatomically constrained tractography (ACT), which is more biologically accurate. The ratio between the number of fibers connecting a cortical area and its direct neighbors and the number of all fibers connecting to this cortical area was proposed to quantify the short-range connectivity. The cortical parcellation was performed on the T₁-weighted MRI data using the FreeSurfer software

(a) Fiber orientation distribution functions.

(b) The estimated structural connectivity matrix.

- to identify 34 cortices in each hemisphere (i.e., Desikan-
- Killiany atlas).
- To evaluate the impacts of image resolution on the short-
- range connectivity estimation, the diffusion data at 1.25
- mm isotropic resolution of 20 healthy subjects from the
- Human Connectome Project (HCP) were downs-sampled
- to widely adopted 1.5, 2, and 2.5 mm isotropic resolution.

- (c,d,e) Scatter plots at 1.25 mm versus at 1.5, 2, 2.5 mm isotropic resolution.

Acknowledgements

We thank Qiyuan Tian for proposing the idea, and Haoxiang Li, Zihan Li, David H. Salat and Susie Y. Huang for helpful discussions.

